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Abstract. The effects of structural asymmetries and of inhomogeneities in the junction parameters on
the electrodynamic response of conventional d.c. SQUID’s are studied both analytically and numerically.
By a first-order perturbative expansion with respect to the parameter β and to the deviation parameters
describing structural asymmetry and inhomogeneity, we write the reduced dynamical equation for the
average superconducting phase difference of a conventional d.c. SQUID. As in homogeneous and symmetric
SQUID’s, the resulting dynamical equation is seen to be similar to that of a single junction with an
unconventional current-phase relation characterized by a second harmonic contribution; in addition, a
cosine term appears as a consequence of superconducting coupling inhomogeneity. By means of the reduced
dynamical equation, the I-V characteristics in the presence of an external rf field and the critical current
of the device are studied in the absence of noise.

PACS. 85.25.Dq Superconducting quantum interference devices (SQUIDs) – 74.50.+r Tunneling
phenomena; point contacts, weak links, Josephson effects

1 Introduction

In order to describe the electrodynamic properties
of d.c. SQUID’s (Superconducting Quantum Interference
Devices), the two-junction interferometer model can be
adopted [1]. In this model, the coupled nonlinear ordi-
nary differential equations governing the dynamics of the
gauge-invariant superconducting phase differences across
the Josephson junctions (JJ’s) are often reduced to a sin-
gle equation [2], setting to zero the parameter β = LIJ

Φ0
, 2L

being the inductance of the SQUID, IJ the average max-
imum Josephson current of the JJ and Φ0 the elemen-
tary flux quantum. This simple assumption, valid in the
small-β limit, greatly simplifies the analytic problem and
captures most of the salient physical properties of the sys-
tem [3]. On the other hand, the complete model can also
be studied by means of numerical analysis [4].

Besides the great variety of applications that the su-
perconducting devices allow [5], d.c. SQUID models are
interesting dynamical systems per se. The periodic prop-
erties of the instantaneous voltage and the particular pe-
riodicity shown by the time-averaged voltage with respect
to the externally applied flux, indeed, may justify all the
theoretical effort made in studying these models. The be-
haviour of d.c. SQUID’s in the presence of noise, of struc-
tural deformations or inhomogeneity in the junction pa-
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rameters, is a well known subject in the literature [4].
New scenarios, however, have recently been opened by hy-
brid d.c. SQUID’s, containing one conventional Josephson
junction (0-junction) and one presenting an intrinsic phase
difference of π (π-junction) [6,7].

The complete dynamical equations of this system show
some very interesting peculiarities from the mathematical
point of view. In this respect, the authors [8] have very re-
cently shown that the complete set of dynamical equations
written for a homogeneous system can be reduced to only
one non-linear ordinary differential equation characterized
by an unconventional current-phase relation (CPR) with
a second harmonic contribution. Following this approach
the amplitudes of the integer and half-integer steps, mea-
sured and calculated through numerical simulations by
Vanneste et al. [9], have been found for small β-values.

In the present work we consider a structurally asym-
metric SQUID with inhomogeneous junction parameters,
as in a recent work by Müller et al. [10]. However, for
this configuration, we only consider the very-low β limit
in the absence of noise so that a reduced two-junction in-
terferometer model can still be adopted. In the resulting
non-linear ordinary differential equation for the average
gauge-invariant superconducting phase difference across
the Josephson junctions (JJ’s) a second harmonic term
appears because of the electromagnetic coupling between
the two junctions. In addition, a cosine term appears as
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a consequence of superconducting coupling inhomogene-
ity of the two JJ’s. On the basis of the reduced model
we calculate, in closed analytic form, the amplitude of
half-integer constant voltage steps in the current-voltage
characteristics of the device. We notice that the above ex-
perimentally observable properties are first-order effects
in the perturbation parameter β and in the inhomogene-
ity parameter ε. Moreover, the critical current of device
is seen not to be affected, to first order in the pertur-
bation parameters, by structural asymmetries and inho-
mogeneities in the junction parameters except for values
of the applied external flux half-integer multiples of the
elementary quantum flux Φ0.

The paper is thus organized as follows. In the second
section the reduced model dynamical equation for the av-
erage gauge-invariant superconducting phase difference is
derived. In the third section the I-V characteristics of the
device are studied and amplitudes of the constant-voltage
steps are analytically derived. In the fourth section the
effects of the structural asymmetries and inhomogeneities
on the critical current are investigated. Conclusions are
finally drawn in the last section.

2 The reduced two-junction interferometer
model

Consider the two-junction interferometer circuital model
schematically represented in Figure 1. If the Resistively
Shunted Junction (RSJ) model [2] is adopted to describe
the equations of the motion of the gauge-invariant super-
conducting phase differences ϕ1 and ϕ2 across the two
junctions, the complete electrodynamic response of d.c.
SQUID’s can be given by solving this dynamical prob-
lem [2]. In the presence of structural asymmetry and of
inhomogeneous junction parameters, however, some care
must be taken to write down the time-evolution equation
for ϕ1 and ϕ2. As we shall also notice, particular attention
must also be paid in correctly defining observable electro-
dynamic quantities in terms of these functions. We thus
start by assuming that the resistive parameters, the max-
imum Josephson currents and the branch inductances can
be written, respectively, as follows:

R1 = (1 + δ)R, R2 = (1 − δ)R (1a)

IJ1 = (1 + ε) IJ , IJ2 = (1 − ε) IJ (1b)

L1 = (1 + λ)L, L2 = (1 − λ)L. (1c)

Here R, IJ , and L are the average values of the corre-
sponding parameters, while the parameters δ, ε, and λ de-
scribe the deviation of the actual model parameters from
these values. In the present analysis, we shall consider the
deviation parameters small enough to allow a first-order
perturbation analysis of the problem. In addition, we shall
assume that the usual SQUID parameter β = LIJ

Φ0
is itself

a perturbation parameter.
Following the schematic representation of the d.c.

SQUID given in Figure 1, we briefly recall the main steps
to obtain differential equations governing the dynamics

Fig. 1. Schematic representation of two-junction interferome-
ter model.

of the gauge-invariant superconducting phase differences
across the JJ’s. We express the flux Φ as the sum of the
applied flux Φex plus the flux induced by the currents I1

and I2 in the two branches, so that

Φ = Φex + L1I1 − L2I2. (2)

By means of the above electrodynamic relation and by
fluxoid quantization

2π

Φ0
Φ + ϕ1 − ϕ2 = 2πn, (3)

n being an integer, the currents I1 and I2 can be related
to the gauge-invariant superconducting phase differences
as follows:

I1 =
1
2

[
(1 − λ) IB − Φ0

2πL
(ϕ1 − ϕ2) − Φex

L

]
(4a)

I2 =
1
2

[
(1 + λ) IB +

Φ0

2πL
(ϕ1 − ϕ2) +

Φex

L

]
(4b)

having taken n = 0.
By defining now the following normalized quantities

i1 =
I1

IJ
, i2 =

I2

IJ
, iB =

IB

IJ
,

Ψex =
Φex

Φ0
, τ =

2πRIJ

Φ0
t (5)

we can write:

1
1 + δ

dϕ1

dτ
+ (1 + ε) sin ϕ1 +

ϕ1 − ϕ2

4πβ
=

1
2

[
(1 − λ) iB − Ψex

β

]
, (6a)

1
1 − δ

dϕ2

dτ
+ (1 − ε) sin ϕ2 − ϕ1 − ϕ2

4πβ
=

1
2

[
(1 + λ) iB +

Ψex

β

]
. (6b)

Introduce now the following new quantities: ϕA = ϕ1+ϕ2
2

and Ψ = ϕ2−ϕ1
2π , the first being simply the average value

of the gauge-invariant superconducting phases, the sec-
ond representing the number of fluxons trapped in to the



R. De Luca and F. Romeo: Structurally asymmetric d.c. SQUID’s in the presence of coupling energy inhomogeneity... 447

SQUID. The dynamical equations (6a-b) can be so rewrit-
ten in terms of the variables ϕA and Ψ :

dϕA

dτ
+ cos (πΨ) sinϕA

− (δ + ε) sin (πΨ) cosϕA − δ

2β
Ψ =

iB
2

− δ

2β
Ψex, (7a)

π
dΨ

dτ
+ sin (πΨ) cosϕA

− (δ + ε) cos (πΨ) sin ϕA +
Ψ

2β
= (λ − δ)

iB
2

+
Ψex

2β
.

(7b)

Notice that the above expressions are written disregard-
ing terms which are of second order in the perturbation
parameters. As in a previous work [8] we shall reduce the
above set of equations to only one differential equation.
We assume the existence of a first-order perturbed solu-
tion Ψ (τ) in the parameters β, δ, ε, and λ so that

Ψ (τ) = Ψex + βΨβ (τ) + δΨδ (τ) + εΨε (τ) + λΨλ (τ) . (8)

By substituting equation (8) into equation (7b), we find,
to first order in the perturbation parameters:

Ψ (τ) = Ψex − 2β sin (πΨex) cosϕA. (9)

Substituting now the above expression in equation (7a)
we have:

dϕA

dτ
+ cos (πΨex) sin ϕA + πβ sin2 (πΨex) sin 2ϕA

− ε sin (πΨex) cosϕA =
iB
2

. (10)

The above equation can be considered as a reduced two-
junction interferometer model for a d.c. SQUID. In this
model an effective non-sinusoidal CPR appears because of
the non-vanishing contribution of correction terms linked
to the parameter β and to the deviation parameter ε. In
the absence of inhomogeneity in the Josephson energy cou-
pling (ε = 0), we obtain the result already found in ref-
erence [8]. In this preliminary work, we have shown that,
because of the additional second harmonic sine term in the
effective CPR, half integer constant voltage steps appear
in the I-V characteristics when the d.c. SQUID is subject
to rf –frequency radiation.

From equation (10) we can finally notice that no effect
is due to inhomogeneity in the resistive parameters and to
structural asymmetry, according to the present first-order
perturbation analysis.

3 Constant voltage steps in I-V
characteristics

In the present section we derive the expression for the
Shapiro steps in the I-V characteristics of a structurally
asymmetric and inhomogeneous d.c. SQUID.

Consider the voltage V across the SQUID branches to
be given by the following expression:

V (t) = V0 + V1 cosωf t (11)

where ωf = 2πν is the angular frenquency of the rf signal.
Introducing the normalized voltage v (τ) = V

RIJ
, we may

write:
v (τ) =

dϕA

dτ
+ πβλ

d

dτ
(i1 − i2) . (12)

Notice, however, that the second term in equation (12) is
of order two with respect to the perturbation parameters.
Considering equations (11) and (12), neglecting second
order terms contributions, we can write:

ϕA (τ) = ϕ0 + ω0τ + a sinωτ, (13)

where ω0 = V0
RIJ

and a = V1
νΦ0

and ω = Φ0
2πRIJ

ωf . By
substituting the expression for ϕA given in equation (13)
into the stationary portion of equation (10) we get

I = 2Im
{
(x − iεy)eiϕ0eiω0τeia sin ωτ

+πβy2ei2ϕ0ei2ω0τei2a sin ωτ
}

, (14)

where the factor 2 is introduced to take account of the
entire bias current, and where we have set x = cos (πΨex)
and y = sin (πΨex). By now expanding the exponential of
a sine as follows

eiλ sin ωt =
+∞∑

k=−∞
Jk (λ) eikωt, (15)

where Jk is the kth order Bessel function, we rewrite
equation (14) as

I = 2Im

{
(x − iεy)eiϕ0

+∞∑
k=−∞

Jk (a) ei(ω0+kω)τ

+πβy2ei2ϕ0

+∞∑
m=−∞

Jm (2a) ei(2ω0+mω)τ

}
. (16)

In order to find the cases in which non-vanishing time-
averaged currents are present, we consider the following
two propositions:

P ≡ {There exists an integer k, such that ω0 + kω = 0} ;
Q≡{There exists an integer m, such that 2ω0+mω=0}.

(17)
First of all notice that P implies Q, but Q does not nec-
essarily imply P . Therefore, we only need to consider the
following cases: a) Q is true; b) both P and Q are true.
We shall now treat these cases one at a time.

Case a)

Since Q is true, we may write m = −ω0
ω . We now distin-

guish the following two sub-cases.
i) |m| even ⇒ m = −2p = −2ω0

ω , with p posi-
tive integer.
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In this case both Q and P are true and we may set k = −p,
so that the maximum value of the current step is obtained
by maximizing, with respect to ϕ0, the following expres-
sion:

I = 2Im
{
(−1)p (x − iεy)eiϕ0Jp (a) + πβy2ei2ϕ0J2p (2a)

}
,

(18)
where we have used the following property of Bessel func-
tions: J−p (x) = (−1)p

Jp (x). Detailed calculations are re-
ported in Appendix, where it is shown that integer Shapiro
steps are present in the I-V characteristics.
ii) |m| odd ⇒ m = − (2q − 1) = −2ω0

ω , with q positive
integer.
In this case only Q is true, so that the maximum value of
the current step is obtained by maximizing, with respect
to ϕ0, the following expression:

I = 2Im
{−πβy2ei2ϕ0J2q−1 (2a)

}
. (19)

Here the maximum is readily found to be

∆I 2q−1
2

= 2πβ sin2 (πΨex) |J2q−1 (2a)| , (20)

and the steps having half-height ∆I 2q−1
2

appear at

V0( 2q−1
2 ) = (2q−1)

2 Φ0ν. Notice also that the expression for
∆I 2q−1

2
given in equation (20) is at all identical to what

obtained in the case ε = 0 [8].

Case b)

In this case both P and Q are true and we may set
m = 2k = −2p, where p is a positive integer. The
constant-voltage steps are thus obtained as in the pre-
vious case, with |m| even. Detailed calculations for this
case are performed in the Appendix.

In the following we summarize the results obtained in
both cases:

i) Integer Shapiro steps appear at voltages V0p = pΦ0ν,
where p is an integer, with amplitude

∆Ip =




2 |cos (πΨex)Jp (a)| for Ψex �= 2k−1
2

2πβ |J2p (2a)| + √
2ε |Jp (a)| for Ψex = 2k−1

2 .
(21)

ii) Half-integer Shapiro steps appear at voltages
V0( 2p−1

2 ) = 2p−1
2 Φ0ν, where p is an integer, with

amplitude

∆I 2p−1
2

= 2πβ sin2 (πΨex) |J2p−1 (2a)| . (22)

From the above it can be noticed what follows. When the
present analysis is compared to the results obtained in
reference [8] for a homogeneous d.c. SQUID with finite,
but small, value of the parameter β, no correction to in-
teger Shapiro steps to first order in ε is detectable, except
for Ψex = 2k−1

2 , where k is an integer. In this case ex-
perimental observation of an enhancement of the current

(a)

(b)

(c)

Fig. 2. (a) I-V characteristics for a d.c. SQUID with β = 0.1,
ε = 0, Ψex = 0.25, and a = 0.9. The voltage is normalized
in such a way that steps appear at integer and half-integer
values. (b) Comparison between the first half-integer steps, one
obtained at ε = 0 (on the left), the other at ε = 0.08 (on
the right). (c) Comparison between the first integer steps, one
obtained at ε = 0 (on the left), the other at ε = 0.08 (on the
right).

step amplitudes given in equation (21) should be possi-
ble. On the other hand, according to the present pertur-
bation analysis, half-integer Shapiro steps are not affected
by structural asymmetry or inhomogeneity of the junction
parameters.

In Figure 2a we thus show the I-V characteristics for a
d.c. SQUID with β = 0.1, ε = 0, Ψex = 0.25, and a = 0.9.
In this figure and in the following ones we normalize the
voltage in such a way that steps appear at integer and
half-integer values. For this choice of the field, we see that
integer and half-integer steps are present. If we now let
ε = 0.08, keeping the other parameters fixed, we should
not be able, according to equation (21), to detect any vari-
ation in the steps. In Figure 2b we show the comparison
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(a)

(b)

(c)

Fig. 3. (a) I-V characteristics for a d.c. SQUID with β = 0.1,
ε = 0, Ψex = 0.5, and a = 0.9. The voltage is normalized in such
a way that steps appear at integer and half-integer values. (b)
Comparison between the first half-integer steps, one obtained
at ε = 0 (on the left), the other at ε = 0.08 (on the right).
(c) Comparison between the first integer steps, one obtained
at ε = 0 (on the left), the other at ε = 0.08 (on the right).

between the first half-integer steps, one obtained at ε = 0,
the other at ε = 0.08. In Figure 2c, instead, we show the
comparison between the first integer steps, one obtained
at ε = 0, the other at ε = 0.08. We find no variation in
the step amplitudes.

In Figure 3a we show the I-V characteristics for a
d.c. SQUID with β = 0.1, ε = 0, Ψex = 0.5, and a = 0.9.
For this choice of the field, half-integer steps attain the
maximum value of the sine term depending on Ψex. If we
now let ε = 0.08, keeping the other parameters fixed, we
should be able, this time, according to equation (21), to
detect variation in integer steps. In Figure 3b we show
the comparison between the first half-integer steps, one
obtained at ε = 0, the other at ε = 0.08. We do not detect

(a)

(b)

Fig. 4. Integer Shapiro steps as a function of variable a, pro-
portional to the amplitude of the applied rf signal, for β = 0.1,
ε = 0.08, Ψex = 0.25. (a) Amplitude of first and second integer
steps. (b) Amplitude of third and fourth integer steps.

any variation in the amplitude of the step in this case. In
Figure 3c we show the comparison between the first inte-
ger steps, one obtained at ε = 0, the other at ε = 0.08. In
this last case we find an increase in the first integer step
calculated for ε = 0.08, as predicted in equation (21), and
detect an internal structure of the step itself.

In Figures 4a–b and in Figures 5a–b we report the am-
plitudes of the integer and half-integer Shapiro steps, re-
spectively, as a function of a, which is proportional to the
amplitude of the applied rf signal, for β = 0.1, ε = 0.08,
Ψex = 0.25. In particular, in Figure 4a the amplitudes of
the first and the second integer steps are shown, while in
Figure 4b the same is done for the third and the fourth
integer steps. In Figure 5a the amplitudes of the first and
the second half-integer steps are represented and, finally,
in Figure 5b the amplitudes of the third and the fourth
half-integer steps are shown. If we imagine to draw a ver-
tical line passing through a fixed value of a in this figures,
we see that there are various types of configurations for the
integer and half-integer steps appearing in the I-V charac-
teristics. For example, if we chose to run an experiment for
β = 0.1, ε = 0.08, Ψex = 0.25 and a = 5.0, we would ex-
pect the amplitude of the fourth integer step to be greater
than the amplitudes of the first, second and third. On the
other hand, the amplitude of the third and fourth half-
integer steps are comparable for this choice of parame-
ters, and greater than the amplitudes of the first and sec-
ond half-integer steps. As for the choice of parameters in
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(a)

(b)

Fig. 5. Integer Shapiro steps as a function of variable a,
proportional to the amplitude of the applied rf signal, for
β = 0.1, ε = 0.08, Ψex = 0.25. (a) Amplitude of first and
second half-integer steps. (b) Amplitude of third and fourth
half-integer steps.

Figure 2a, we notice that first integer step amplitude is
about four times greater than the amplitude of the sec-
ond integer step, as it can be argued from Figure 4a.

4 Critical current

In the present section we shall discuss on the possible cor-
rections to the critical current of a d.c. SQUID due to
the parameters β and ε, since, according to equation (10),
only these parameters could give first order corrections to
the electrodynamic quantities that are observable.

Let us first consider values of the normalized external
flux equal to a half-integer value, i.e., Ψex = 2k−1

2 , with k
integer. We see that the equation of the motion of the d.c.
SQUID (Eq. (10)) can be written in the following way:

dϕA

dπ
+ πβ sin 2ϕA − ε cosϕA =

iB
2

. (23)

Notice that, for ε = 0, the normalize critical current of the
device is ic = 2πβ. Similarly, for β = 0, we have ic = 2ε.
However, let us start considering a d.c. SQUID with β �= 0,
where ε is the perturbation parameter. In this way we can
define a new perturbation parameter η ≡ ε

πβ so that the
function to maximize with respect to ϕA is the following:

iB = 2πβ (sin 2ϕA − η cosϕA) . (24)

Fig. 6. ic vs. Ψex curves for ε = 0, 0.05, 0.1 (bottom to top)
and for β = 0.

After some calculation we find:

ic = 2πβ +
√

2ε. (25)

The above expression means that there is a first-order cor-
rection to the critical current for half-integer values of the
normalized applied flux Ψex either in β, either in ε. Notice,
however, that we cannot reproduce the β = 0 result from
equation (25), given the particular procedure followed [11].

Let us now consider the case Ψex �= 2k−1
2 , with k inte-

ger. It is well known that, for β = 0, the critical current of
a d.c. SQUID in the presence of inhomogeneity in the max-
imum Josephson currents of the junctions, can be written
as follows [2]:

Ic =
√

I2
J1 + I2

J2 + 2IJ1IJ2 cos(2πΨex). (26)

By substituting the expression for IJ1 and IJ2 in equa-
tion (1b), we find

ic = 2
√

cos2 (πΨex) + ε2 sin2 (πΨex)

≈ 2 |cos (πΨex)|
(

1 +
ε2 sin2 (πΨex)
2 cos2 (πΨex)

)
, (27)

which proves absence of first-order correction in the pa-
rameter ε. The reason why there can be such a discrepancy
in the behaviour of the critical current is clearly visible
from Figure 6, where we report the plot of ic vs. Ψex for
ε = 0, 0.05, 0.1, and for β = 0. In Figure 6 we notice that
only in the vicinity of half-integer values of the normalized
applied flux Ψex the deviation from the unperturbed curve
becomes relevant.

By now analyzing the effects of finite β-values on the
critical current of the device, one can show that no correc-
tion to first order in β is present, except for Ψex = 2k−1

2 ,
k integer, for which equation (25) gives the correction
sought. For Ψext �= 2k−1

2 , on the other hand, a second
order analysis is required. In Figure 7a and Figure 7b we
show the curve obtained by numerically maximizing the
expression

iB = 2
[
cos (πΨex) sin ϕA + πβ sin2 (πΨex) sin 2ϕA

−ε sin (πΨex) cosϕA] (28)
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(a)

(b)

Fig. 7. ic vs. Ψex curves for β = 0.02 and for: (a) ε = 0; (b)
ε = 0.05.

as a function of Ψext, for ε = 0 and for ε = 0.05, respec-
tively, taking β = 0.02, superimposing these curves to the
unperturbed one. We immediately notice two important
features. First, we see once more that the unperturbed and
perturbed curves collapse into a single curve at values of
the normalized applied flux far enough form Ψex = 2k−1

2 ,
k integer. The most significant effects of the perturbed
model are thus given in the neighbourhood of Ψex = 2k−1

2 ,
k integer. Second, we notice that these effects introduce a
double periodicity in Ψex, not allowing anymore a period
∆Ψex = 1 in the system, as for d.c. SQUID’s with β = 0.
This last aspect will be treated in more depth in a future
work.

5 Conclusion

By a first-order perturbation approach we have written
the reduced dynamical equation for the average supercon-
ducting phase difference of a structurally asymmetric con-
ventional d.c. SQUID presenting inhomogeneities in the
junction parameters. Following this approach we have cal-
culated the amplitudes of integer and half-integer Shapiro
steps appearing in the I-V characteristics of these devices
in the presence of an external rf field.

Integer Shapiro steps are seen to appear at voltages
V0p = pΦ0ν, where p is an integer, with amplitude

∆Ip =

{
2 |cos (πΨex)Jp (a)| for Ψex �= 2k−1

2

2πβ |J2p (2a)| + √
2ε |Jp (a)| for Ψex = 2k−1

2 ,

while the amplitudes of half-integer Shapiro steps, appear-
ing at voltages V0( 2p−1

2 ) = 2p−1
2 Φ0ν, p integer, are seen to

take the following form:

∆I 2p−1
2

= 2πβ sin2 (πΨex) |J2p−1 (2a)| .
In addition, by analysing, in the absence of noise, the criti-
cal current at small values of β and ε, the latter parameter
describing coupling inhomogeneities of the junctions elec-
trodes, we have noticed that the periodicity of this quan-
tity with respect to the external normalized applied flux
Ψex doubles. This effect is a result of first-order corrections
due to finiteness of β and ε at Ψex = 2k−1

2 , k integer. In
a future work we shall analyze the effects of noise on the
above properties of the system.

Appendix

We start by considering the following expression, consid-
ering p as a positive integer throughout:

I = 2Im
{
(−1)p (x − iεy)eiϕ0Jp (a) + πβy2ei2ϕ0J2p (2a)

}
,

(A.1)
which is to be maximized with respect to ϕ0. By setting
to zero the derivative of I with respect to ϕ0, we find

2πβy2J2p (2a) z4 + (−1)p (x − iεy)Jp (a) z3

+ (−1)p (x + iεy)Jp (a) z + 2πβy2J2p (2a) = 0, (A.2)

where z = eiϕ0 . Let us not solve exactly the above equa-
tion, since we are only interested to the zero and first-order
term in the solution, so that we may set:

z = z0 + βzβ + εzε. (A.3)

If we now substitute in equation (A.2) the above expres-
sion for z, by equating to zero the coefficients of the pa-
rameters β and ε, up to first order, we get

z0 = ±i;
(−1)p

xJp (a) zβ = 2πy2J2p (2a) ;
xJp (a) zε = −iz0yJp (a) .

(A.4)

Assume, in what follows, that Jp (a) �= 0 and distinguish
between two cases: x = 0 and x �= 0.

For x �= 0, solving equation (A.4) for zβ and zε, we
have

z = ±i + β
2πy2

xJp (a)
J2p (2a) ± ε

y

x
. (A.5)

In this way, substituting the above solution in equa-
tion (A.1), we find the maximum value of the pth current
step to be:

∆Ip = 2 |cos (πΨex)Jp (a)| . (A.6)

The above result signifies that, at arbitrary fields, i.e. for
Ψex �= 2k+1

2 , k being an integer, ordinary integer current
steps appear at the following voltage values

V0p = pΦ0ν (A.7)
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with no first-order correction to the expression for ∆Ip

(Eq. (A.6)) already obtained in reference [8].
Next consider the case x = 0 and y = 1, which

appears for Ψex = 2k+1
2 , where k is an integer. We shall

consider, in this case, from the very start, that β is finite
and the only perturbation parameter is ε. For ε = 0, and
assuming J2p (2a) �= 0, we need to consider the following
equation:

z4
1 + 1 = 0, (A.8)

whose solutions are z1 = ±√±i. For ε �= 0, on the other
hand, equation (A.2) can be written as follows:
2πβJ2p (2a) z4− iεJp (a) z3 + iεJp (a) z +2πβJ2p (2a) = 0.

(A.9)
By introducing the new parameter α = Jp(a)

2πJ2p(2a)
ε
β , which

we take to be much less than one, we consider solutions
to the following simplified expression,

z4 − iαz3 + iαz + 1 = 0. (A.10)

To first order in α we find:
z = ±

√
〈±〉 i +

i 〈∓〉 1
4

α, (A.11)

where the symbols 〈±〉 and 〈∓〉 indicate that the order is
fixed, so that when we choose the plus sign in the first, the
minus sign must be chosen in the second, and vice versa.
With this in mind we substitute equation (A.11) in the
expression for the current in equation (A.1), considering
x = 0 and y = 1, so that:

I = 2πβJ2k (2a) Im
{

z2 + (−1)p+1 2iαz
}

=

〈±〉 2πβJ2k (2a)
[
1 ±

√
2α

]
. (A.12)

The maximum of the above values, obtainable by four
different choices of the signs, can finally be written as
follows:

∆I2p = 2πβ |J2p (2a)| +
√

2ε |Jp (a)| . (A.13)
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